Example 2-1: Figure ?? shows a plot of the signal

$$
\begin{equation*}
x(t)=20 \cos (2 \pi(40) t-0.4 \pi) \tag{2.1}
\end{equation*}
$$

In terms of our definitions, the signal parameters are $A=20, \omega_{0}=2 \pi(40) \mathrm{rad} / \mathrm{s}, f_{0}=40 \mathrm{~Hz}$, and $\varphi=-0.4 \pi \mathrm{rad}$. The signal size depends on the amplitude parameter A; its maximum and minimum values are +20 and -20 , respectively. In Fig. ?? the maxima occur at

$$
t=\ldots,-0.02,0.005,0.03, \ldots
$$

and the minima at

$$
\ldots,-0.0325,-0.0075,0.0175, \ldots
$$

The time interval between successive maxima in Fig. ?? is 0.025 s , which is equal to $1 / f_{0}$. To understand why the signal has these properties, we will need to do more analysis.

