Example 3-4: Consider taking the derivative of a DC-offset sine wave $x(t) = 7 + 6 \sin(250\pi t)$. The spectrum set for x(t) is $S = \{(0,7), (125, -3j), (-125, 3j)\}$. In the spectrum of $\frac{d}{dt}x(t)$, the f = 0 term is 7 multiplied by $(j2\pi(0)) = 0$, so it is eliminated; the f = +125-Hz term is multiplied by $(j2\pi(125))$

 $(j2\pi(125))(-3j) = 750\pi$

Thus the spectrum set of $\frac{d}{dt}x(t)$ is $S = \{(125, 750\pi), (-125, 750\pi)\}$. From the spectrum it should be easy to verify that

 $\frac{d}{dt}x(t) = 1500\pi\cos(250\pi t)$

which coincides with the fact that the derivative of a sine function is a cosine and the derivative of a constant is zero.

McClellan, Schafer, and Yoder, *DSP First, 2e*, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. ©2016 Pearson Education, Inc.

