Example 3-6: If f_{Δ} is decreased from 20 Hz to 9 Hz, we see in Fig. ??(a,b) that the envelope of the 200-Hz tone changes much more slowly. The time interval between nulls (zeros) of the envelope is one-half of the period of the f_{Δ} sinusoid, $\frac{1}{2}(1/f_{\Delta})$, so the more closely spaced the frequencies of the sinusoids in (??), the slower the envelope variation. Figures ?? and ?? are simplified somewhat by using zero-phase cosines for both terms in (??), but other phase relationships would give similar patterns. Finally, note that for x(t) in Fig. ?? the spectrum contains frequency components at ± 220 Hz and ± 180 Hz, while for the signal in Fig. ?? the spectrum has frequencies ± 209 Hz and ± 191 Hz.

McClellan, Schafer, and Yoder, *DSP First*, 2e, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. ©2016 Pearson Education, Inc.

