Example 5-4: To illustrate the utility of the results that we have obtained for cascaded LTI systems, we derive a single system that is equivalent to the cascade of two systems defined by

$$h_1[n] = \begin{cases} 1 & 0 \le n \le 3\\ 0 & \text{otherwise} \end{cases} \qquad h_2[n] = \begin{cases} 1 & 1 \le n \le 3\\ 0 & \text{otherwise} \end{cases}$$

The equivalent system, as in Fig. **??**(c), has an impulse response equal to $h[n] = h_1[n] * h_2[n]$. Therefore, to find the overall impulse response h[n] we must convolve $h_1[n]$ with $h_2[n]$. This can be done by using the synthetic polynomial multiplication algorithm of Section **??**. In this case, the computation is as follows:

n	n < 0	0	1	2	3	4	5	6	n > 6
$h_1[n]$	0	1	1	1	1	0	0	0	0
$h_2[n]$	0	0	1	1	1				
$h_1[0]h_2[n]$	0	0	0	0	0	0	0	0	0
$h_1[1]h_2[n-1]$	0	0	1	1	1	1	0	0	0
$h_1[2]h_2[n-2]$	0	0	0	1	1	1	1	0	0
$h_1[3]h_2[n-3]$	0	0	0	0	1	1	1	1	0
h[n]	0	0	1	2	3	3	2	1	0

The equivalent impulse response in the bottom row also defines the filter coefficients $\{b_k\}$, and we can express h[n] as a sum of weighted shifted impulses

$$h[n] = \sum_{k=0}^{6} b_k \delta[n-k]$$

where $\{b_k\}$ is the sequence $\{0, 1, 2, 3, 3, 2, 1\}$. The system with this impulse response h[n] can be implemented either by the single difference equation

$$y[n] = \sum_{k=0}^{6} b_k x[n-k]$$
(5.1)

where $\{b_k\}$ is the above sequence, or by the pair of cascaded difference equations

$$v[n] = \sum_{k=0}^{3} x[n-k]$$

$$y[n] = \sum_{k=1}^{3} v[n-k]$$
(5.2)

McClellan, Schafer, and Yoder, *DSP First*, 2e, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. ©2016 Pearson Education, Inc.