Example 6-7: Often the frequency response is given by an equation containing sines or cosines, for example,

$$H(e^{j\hat{\omega}}) = e^{-j\hat{\omega}} \left(3 - 2\cos\hat{\omega}\right)$$

To obtain the FIR difference equation, it is necessary to write $H(e^{j\hat{\omega}})$ using powers of $e^{-j\hat{\omega}}$. In this example, we can use the inverse Euler formula $\cos \hat{\omega} = \frac{1}{2}(e^{j\hat{\omega}} + e^{-j\hat{\omega}})$, and then obtain

$$H(e^{j\hat{\omega}}) = e^{-j\hat{\omega}} \left[3 - 2\left(\frac{e^{j\hat{\omega}} + e^{-j\hat{\omega}}}{2}\right) \right]$$
$$= -1 + 3e^{-j\hat{\omega}} - e^{-j\hat{\omega}2}$$

Now, it should be easy to see that $H(e^{j\hat{\omega}})$ corresponds to the following FIR difference equation:

$$y[n] = -x[n] + 3x[n-1] - x[n-2]$$

The impulse response, likewise, is easy to determine directly from $H(e^{j\hat{\omega}})$, when expressed in terms of powers of $e^{-j\hat{\omega}}$.

McClellan, Schafer, and Yoder, *DSP First, 2e*, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. ©2016 Pearson Education, Inc.

