Example 8-1: In order to compute the 4-point DFT of the sequence $x[n] = \{1, 1, 0, 0\}$, we carry out the sum (??) four times, once for each value of k = 0, 1, 2, 3. When N = 4, all the exponents in (??) are integer multiples of $\pi/2$ because $2\pi/N = \pi/2$.

$$X[0] = x[0]e^{-j0} + x[1]e^{-j0} + x[2]e^{-j0} + x[3]e^{-j0}$$

= 1 + 1 + 0 + 0 = 2
$$X[1] = 1e^{-j0} + 1e^{-j\pi/2} + 0e^{-j\pi} + 0e^{-j3\pi/2}$$

= 1 + (-j) + 0 + 0 = 1 - j = $\sqrt{2}e^{-j\pi/4}$
$$X[2] = 1e^{-j0} + 1e^{-j\pi} + 0e^{-j2\pi} + 0e^{-j3\pi}$$

= 1 + (-1) + 0 + 0 = 0
$$X[3] = 1e^{-j0} + 1e^{-j3\pi/2} + 0e^{-j3\pi} + 0e^{-j9\pi/2}$$

= 1 + (j) + 0 + 0 = 1 + j = $\sqrt{2}e^{j\pi/4}$

Thus, we obtain the four DFT coefficients $X[k] = \{2, \sqrt{2}e^{-j\pi/4}, 0, \sqrt{2}e^{j\pi/4}\}.$

Note: The term "coefficient" is commonly applied to DFT values. This is appropriate because X[k] is the (complex amplitude) coefficient of $e^{j(2\pi/N)kn}$ in the IDFT (??).

McClellan, Schafer, and Yoder, *DSP First*, 2e, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. ©2016 Pearson Education, Inc.