Example 9-2: Consider the *z*-transform X(z) given by the equation

$$X(z) = 1 - 2z^{-1} + 3z^{-3} - z^{-5}$$

In the *z*-transform definition (??), the signal values are the polynomial coefficients. Thus we can list x[n] in tabular form as in Example 9-1, or we can give a case-by-case equation for the sequence values as a function of n in the form

$x[n] = \langle$	0	n < 0
	1	n = 0
	-2	n = 1
	0	n = 2
	3	<i>n</i> = 3
	0	<i>n</i> = 4
	-1	<i>n</i> = 5
	0	<i>n</i> > 5

Alternatively, we can go from the *z*-transform in (??) to the time-domain representation (??) in terms of impulse sequences, and then write the corresponding sequence x[n] as

$$x[n] = \delta[n] - 2\delta[n-1] + 3\delta[n-3] - \delta[n-5]$$

McClellan, Schafer, and Yoder, *DSP First, 2e*, ISBN 0-13-065562-7. Prentice Hall, Upper Saddle River, NJ 07458. ©2016 Pearson Education, Inc.