Example 9-5: The z-transform method can be used to convolve the following signals:

$$
\begin{aligned}
& x[n]=\delta[n-1]-\delta[n-2]+\delta[n-3]-\delta[n-4] \\
& h[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]+4 \delta[n-3]
\end{aligned}
$$

The z-transforms of the sequences $x[n]$ and $h[n]$ are

$$
\begin{aligned}
X(z) & =0+1 z^{-1}-1 z^{-2}+1 z^{-3}-1 z^{-4} \\
\text { and } \quad H(z) & =1+2 z^{-1}+3 z^{-2}+4 z^{-3}
\end{aligned}
$$

Both $X(z)$ and $H(z)$ are polynomials in z^{-1}, so we can compute the z-transform of the convolution by multiplying these two polynomials, that is,

$$
\begin{aligned}
Y(z)= & H(z) X(z) \\
= & \left(1+2 z^{-1}+3 z^{-2}+4 z^{-3}\right)\left(z^{-1}-z^{-2}+z^{-3}-z^{-4}\right) \\
= & z^{-1}+(-1+2) z^{-2}+(1-2+3) z^{-3} \\
& +(-1+2-3+4) z^{-4} \\
& +(-2+3-4) z^{-5}+(-3+4) z^{-6}+(-4) z^{-7} \\
= & z^{-1}+z^{-2}+2 z^{-3}+2 z^{-4}-3 z^{-5}+z^{-6}-4 z^{-7}
\end{aligned}
$$

Since the coefficients of any z-polynomial are the sequence values, with their position in time being indicated by the power of $\left(z^{-1}\right)$, we can "inverse transform" $Y(z)$ to obtain

$$
\begin{aligned}
y[n]= & \delta[n-1]+\delta[n-2]+2 \delta[n-3]+2 \delta[n-4] \\
& -3 \delta[n-5]+\delta[n-6]-4 \delta[n-7]
\end{aligned}
$$

To verify that we have obtained the correct convolution result, we now perform the convolution sum (??) directly to compute the output. If we write out a few terms, we can detect a pattern that is similar to the z-transform polynomial multiplication.

$$
\begin{aligned}
y[0] & =h[0] x[0]=1(0)=0 \\
y[1] & =h[0] x[1]+h[1] x[0]=1(1)+2(0)=1 \\
y[2] & =h[0] x[2]+h[1] x[1]+h[2] x[0] \\
& =1(-1)+2(1)+3(0)=1 \\
y[3] & =h[0] x[3]+h[1] x[2]+h[2] x[1]+h[3] x[0] \\
& =1(1)+2(-1)+3(1)+4(0)=2 \\
y[4] & =h[0] x[4]+h[1] x[3]+h[2] x[2]+h[3] x[1] \\
& =1(-1)+2(1)+3(-1)+4(1)=2 \\
\vdots & =\quad \vdots
\end{aligned}
$$

For each term above, notice how the index of $h[k]$ and the index of $x[n-k]$ sum to the same value (i.e., n) for all products that contribute to $y[n]$. The same thing happens in polynomial multiplication because exponents add.

In Section ?? on p. ?? we demonstrated a synthetic multiplication table for evaluating the convolution of $x[n]$ with $h[n]$. Now we have a justification for this procedure because we are, in fact, multiplying the polynomials $X(z)$ and $H(z)$. The procedure is repeated below for the numerical example of this section.

z	z^{0}	z^{-1}	z^{-2}	z^{-3}	z^{-4}	z^{-5}	z^{-6}	z^{-7}
$x[n], X(z)$	0	+1	-1	+1	-1	0	0	0
$h[n], H(z)$	1	2	3	4				
$X(z)$	0	+1	-1	+1	-1	0	0	0
$2 z^{-1} X(z)$		0	+2	-2	+2	-2	0	0
$3 z^{-2} X(z)$			0	+3	-3	+3	-3	0
$4 z^{-3} X(z)$				0	+4	-4	+4	-4
$y[n], Y(z)$	0	+1	+1	+2	+2	-3	+1	-4

In the z-transforms $X(z), H(z)$, and $Y(z)$, the power of z^{-1} is implied by the horizontal position of the coefficient in the table. Each row is produced by multiplying the $x[n]$ row by one of the $h[n]$ values and shifting the result right by the implied power of z^{-1}. The final answer is obtained by summing down the columns, so the bottom row has the values of $y[n]=x[n] * h[n]$ or, equivalently, the coefficients of the polynomial $Y(z)$.

McClellan, Schafer, and Yoder, DSP First, $2 e$, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458. ©2016 Pearson Education, Inc.

