Example C-2: Define a bipolar square wave as follows:

$$
y(t)= \begin{cases}+1 & \text { for } 0 \leq t<T_{0} / 2 \\ -1 & \text { for } T_{0} / 2 \leq t<T_{0}\end{cases}
$$

This square wave can be related to the zero-one square wave of Example C-1 via $y(t)=2(x(t)-1 / 2)$. Subtracting $1 / 2$ from $x(t)$ will change only the DC value, then multiplying by two will double the size of all the Fourier coefficients. Since the Fourier coefficients of the zero-one square wave are

$$
a_{k}= \begin{cases}1 / 2 & \text { for } k=0 \\ \frac{-j}{k \pi} & \text { for } k \text { odd } \\ 0 & \text { for } k= \pm 2, \pm 4, \ldots\end{cases}
$$

the Fourier coefficients $\left\{b_{k}\right\}$ for $y(t)$ are

$$
b_{k}= \begin{cases}2\left(a_{0}-1 / 2\right)=0 & \text { for } k=0 \\ 2 a_{k}=2\left(\frac{-j}{k \pi}\right) & \text { for } k \text { odd } \\ 0 & \text { for } k= \pm 2, \pm 4, \ldots\end{cases}
$$

