PROBLEM:

equation on the right, and enter the number in the answer box: **System Function** Impulse Response or Difference Equation

For each of the system functions listed on the left, find the corresponding impulse response or difference

(a) $H(z) = 1 - z^{-2}$

(b)
$$H(z) = \frac{1}{1 - 0.2z^{-1}}$$

ANS =
$$z^{-2}$$

(c)
$$H(z) = \frac{z^{-2}}{1 + 0.2z^{-1}}$$

$$H(z) = \frac{1}{1 + 0.2z^{-1}}$$
ANS =

(e) $H(z) = \frac{1 + 0.2z^{-1}}{1 - z^{-1}}$

ANS =

(d)
$$H(z) = 1 + 0.2z^{-1}$$

$$H(z) = 1 + 0.2z^{-1}$$
ANS =

7.
$$h[n] = (0.2)^{n+2}u[n+2]$$

8. $y[n] = x[n] + 0.2x[n-1]$

5.
$$y[n] = -y[n-1] + x[n] + 0.2x$$

$$i] = -y[n]$$

6. $h[n] = \delta[n] - \delta[n-2]$

$$-0.2)^{n}u$$

1. $h[n] = \delta[n] + 1.2u[n-1]$

2.
$$y[n] = 0.2y[n-1] + x[n]$$

3. $h[n] = (-0.2)^n u[n]$

$$\iota[n]$$

$$-\lambda[n]$$

3.
$$h[n] = (-0.2)^n u[n]$$

4. $v[n] = -v[n-1] + v[n] + 0.2v[n-1]$

3.
$$h[n] = (-0.2)^n u[n]$$

4. $v[n] = -v[n-1] + x[n] + 0.2x[n-1]$