
PROBLEM:

Suppose that the output of the D-to-C converter in the system above is found to be

$$y(t) = 2 + 10\cos(2\pi(150)t + \pi/3)$$
 when the sampling rate is $f_s = 1/T_s = 400$ samples/second.

(a) Give an equation for x[n] in terms of cosine functions. Write your answer on the line below.

Answer:
$$x[n] = \frac{1}{(b)}$$

(b) Determine two different input signals $x(t) = x_1(t)$ and $x(t) = x_2(t)$ that could have produced the

(b) Determine two different input signals $x(t) = x_1(t)$ and $x(t) = x_2(t)$ that could have produced the given output of the D-to-C converter. All of the frequencies in your answers must be positive and less than 400 Hz. Write your answers for both inputs on the lines below.

Answer: $x_1(t) =$

Answer: $x_2(t) =$