PROBLEM: For each of the following frequency responses on the left, pick one of the representations, S_1 through S_8 on the right, that defines exactly the same LTI system. Write your answer S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , S_7 , or S_8 , in the box next to each frequency response. ANS = (a) $$1 + e^{j\hat{\omega}}$$ S_1 $b_k = \{1, 0, 1\}$ ANS = (b) $2e^{-3j\hat{\omega}}$ S_2 $y[n] = x[n] + 2x[n-3]$ ANS = (c) $\frac{\sin(2\hat{\omega})}{\sin(\hat{\omega}/2)}e^{-3j\hat{\omega}/2}$ S_3 $b_k = \{1, 1, 1, 1\}$ ANS = (d) $e^{-j\hat{\omega}}\cos(\hat{\omega})$ S_4 $b[n] = 0.5\delta[n] + 0.5\delta[n-2]$ ANS = (d) $$e^{-j\hat{\omega}}\cos(\hat{\omega})$$ S_4 $h[n] = 0.5\delta[n] + 0.5\delta[n-2]$ S_5 $h[n] = 2\delta[n-3]$ S_6 $h[n] = \delta[n] - \delta[n-1]$ $$S_5$$ $h[n] = 2\delta[n-3]$ S_6 $h[n] = \delta[n] - \delta[n-1]$ S_7 $y[n] = \frac{1}{3} \{x[n] + x[n-1] + x[n-2]\}$ y[n] = x[n] + x[n-1]