Define $x(t)$ as

$$
x(t)=3 \sqrt{3} \cos (10 \pi t-\pi / 3)+3 \cos (10 \pi(t+0.05))
$$

(a) Use phasor addition to express $x(t)$ in the form $x(t)=A \cos \left(\omega_{0} t+\phi\right)$ by finding the numerical values of A and ϕ, as well as ω_{0}.
(b) Make two complex plane plots to illustrate how complex amplitudes (phasors) were used to solve part (a). On the first plot, show the two complex amplitudes being added; on the second plot, show your solution as a vector and the addition of the two complex amplitudes as vectors (head-to-tail).

Two vectors here.

Head-to-tail plot here.

real part
real part

