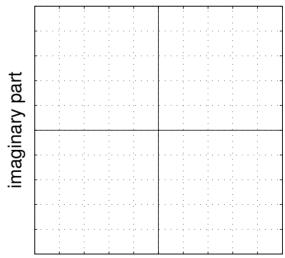
PROBLEM:

Define x(t) as


$$x(t) = \sqrt{2}\cos(10\pi(t+.05)) + \cos(10\pi t - 3\pi/4)$$

- (a) Use phasor addition to express x(t) in the form $x(t) = A \cos(\omega_0 t + \phi)$ by finding the numerical values of *A* and ϕ , as well as ω_0 .
- (b) Make two complex plane plots to illustrate how complex amplitudes (phasors) were used to solve part (a). On the first plot, show the two complex amplitudes being added; on the second plot, show your solution as a vector and the addition of the two complex amplitudes as vectors (head-to-tail).

Two vectors here.

			!	!			!	:	
				•	•	 	:	 •	
			-						
		- · · ·				 		 	
			:						
	5	[
P	_					 		 	
P			-						
P									
	0					 	:		
	ſ		-						
			÷ • • • •			 	;	 	
		- · · ·				 		 	
			-						

Head-to-tail plot here.

