PROBLEM:

Ideal
$$x[n]$$
 Ideal $y(t)$ D-to-C Converter

$$T_s = 1/f_s$$

$$T_s = 1/f_s$$

Suppose that the continuous-time input x(t) to the above system is given as

$$x(t) = \cos(9000\pi t) + \cos(7000\pi t) + \cos(2000\pi t).$$

(b) Given that $f_s = 8,000$ samples/second, plot the frequency spectrum for x[n].

x(t)

 $x(t) = \cos(9000\pi t) + \cos(7000\pi t) + \cos(2000\pi t).$ (a) What sampling rate is required such that no aliasing occurs for x(t)? $f_s =$

Use
$$\hat{\omega}$$
 for digital freq.

$$-\pi$$
 $-.8\pi$ $-.6\pi$ $-.4\pi$ $-.2\pi$ 0 $.2\pi$ $.4\pi$ $.6\pi$ $.8\pi$ π $\hat{\omega}$
(c) Given that $x(t) = \cos(17000\pi t + \pi)$ and $f_s = 10000$ samples/second, write a simplified expression for the output $y(t)$ in terms of cosine functions.