PROBLEM:

Suppose that the continuous-time input
$$x(t)$$
 ldeal $x[n]$ ldeal $x[n]$ ldeal $x[n]$ D-to-C $x[n]$ ldeal $x[$

$$x(t) = \cos(14000\pi t) + \cos(2000\pi t) + \cos(1000\pi t).$$

(a) What sampling rate is required such that no aliasing occurs for x(t)? $f_s =$

(b) Given that
$$f_s = 12,000$$
 samples/second, plot the frequency spectrum for $x[n]$.

Use $\hat{\omega}$ for digital freq.

$$-\pi$$
 $-.8\pi$ $-.6\pi$ $-.4\pi$ $-.2\pi$ $\stackrel{1}{0}$ $.2\pi$ $.4\pi$ $.6\pi$ $.8\pi$ π $\hat{\omega}$
(c) Given that $x(t) = \cos(25000\pi t)$ and $f_s = 10000$ samples/second, write a simplified expression for the output $y(t)$ in terms of cosine functions.