For both parts below draw a phasor diagram to illustrate the solution.
(a) Solve for $x[n]$ in the following equation:

$$
x[n]=3 \cos (n-5 \pi / 3)+5 \cos (n+3 \pi)+5 \cos (n-7 \pi / 3) \quad \text { for } n=0, \pm 1, \pm 2,
$$

Express $x[n]$ in the form $x[n]=A \cos \left(\omega_{0} n+\phi\right)$
(b) Use the idea of a "rotating phasor" to find a solution to

$$
A \cos \left(\omega_{0} n+\phi\right)-2 A \cos \left(\omega_{0}(n-2)+\phi\right)=3 \cos (\pi n / 3) \quad \text { for all } n
$$

Determine numerical values for ω_{0}, A and ϕ.
Show the vector diagram of the phasor addition for the fixed value of $n=0$.

