PROBLEM:

A computer music student decided that he would create a new type of signal where the frequency moved as a function of time. In particular, he planned to generate a "chirp" signal—one that swept in frequency from $\omega_{1}=2 \pi f_{1}$ to $\omega_{2}=2 \pi$ as time goes from $t=0$ to $t=T_{2}$.

It turns out that the instantaneous frequency of the chirp can be derived from a derivative operation. If we define $x(t)$ in the following manner:

$$
\begin{equation*}
x(t)=A \cos \left(\alpha t^{2}+\beta t+\phi\right) \tag{1}
\end{equation*}
$$

then we can think of this as the cosine function operating on a time-varying argument

$$
\psi(t)=\alpha t^{2}+\beta t+\phi
$$

The derivative of $\psi(t)$ is the instantaneous frequency which is also the audible frequency heard from the chirp.

$$
\begin{equation*}
\omega_{i}(t)=\frac{d}{d t} \psi(t) \quad \text { radians } \tag{2}
\end{equation*}
$$

(a) For the "chirp" in (1) determine formulas for the beginning frequency $\left(\omega_{1}\right)$ and ending frequency $\left(\omega_{2}\right)$ in terms of α, β and T_{2}.
(b) For the "chirp" signal

$$
x(t)=\Re e\left\{e^{j\left(40 t^{2}+27 t+13\right)}\right\}
$$

derive a formula for the instantaneous frequency.
(c) Make a plot of the instantaneous frequency (in Hertz) versus time over the range $0 \leq t \leq 1 \mathrm{sec}$.

