PROBLEM:

Suppose that a system is defined by the following operator

$$H(z) = (1 - z^{-1}) \frac{1 + z^{-4}}{1 - 0.8z^{-2}}$$

- (a) Write the time-domain description of this system—in the form of a difference equation.
- (b) Write the formula for the frequency response of the system.
- (c) Derive a simple formula for the magnitude squared of $H(e^{j\hat{\omega}})$ response versus $\hat{\omega}$.
- (d) This system can "block" certain input signals. For which input frequencies ω_0 , is the response to $x[n] = \cos(\omega_0 n)$ equal to zero?
- (e) When the input to the system is $x[n] = \cos(\pi n/3)$ determine the output signal y[n] in the form:

A
$$\cos(\omega_0 n + \phi)$$

Give numerical values for the constants A, ω_0 and ϕ .