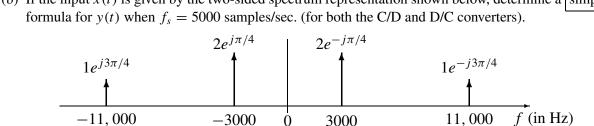
PROBLEM:


Consider the following system.

(a) Suppose that the discrete-time signal x[n] is given by the formula

$$x[n] = 27\cos(0.11\pi n - \pi/3)$$

If the sampling rate is $f_s = 5000$ samples/second, determine two *different* continuous-time signals $x(t) = x_1(t)$ and $x(t) = x_2(t)$ that could have been inputs to the above system; i.e., find $x_1(t)$ and

x₂(t) such that x[n] = x₁(nT_s) = x₂(nT_s) if T_s = 200 μsec. Both of these input signals should have a frequency less than 5000 Hz. Give a formula for each signal.
(b) If the input x(t) is given by the two-sided spectrum representation shown below, determine a simple

