PROBLEM:

The following MATLAB code will compute a time response and the frequency response of a digital filter:

bb = [1 0 -1]; xn = [1, -1, -1, -1, 1, zeros(1,3)]; yn = firfilt(bb, xn); subplot(2,1,1), stem([0:9], yn(1:10)); %--- TIME RESPONSE w = -pi : (pi/100) : pi; H = freqz(bb, 1, w); subplot(2,1,2), plot(w, abs(H)) %--- FREQUENCY RESPONSE

(a) Make the plot of yn that will be done by the MATLAB stem function (in line #4).

(b) Again referring to the MATLAB code above, make the plot of the magnitude response vs. $\hat{\omega}$ over the range $-\pi \leq \hat{\omega} \leq \pi$. Justify by giving a simple formula for the frequency response $H(e^{j\hat{\omega}})$. Remember that the magnitude should never be negative.