In all parts of this problem, consider a signal $x[n]=20 \cos (0.5 \pi n+\pi)$.
(a) The signal $x[n]$ can be represented as $x[n]=\Re e\left\{X e^{j \hat{\omega}_{0} n}\right\}$. Determine X and $\hat{\omega}_{0}$ and plot X as a vector in the complex plane.
(b) Consider the signal $w[n]=x[n-5]$ which can be expressed as $w[n]=\Re e\left\{W e^{j \hat{\omega}_{0} n}\right\}$. What operation on the phasor X corresponds to the the operation of time delay by 5 samples? That is, how is W related to X ? Express your answer both in terms of the general symbol $\hat{\omega}_{0}$ and in terms of the numerical value of $\hat{\omega}_{0}$ determined in part (a).
(c) Express the signal $y[n]=x[n]+w[n]$ in the form $y[n]=A \cos \left(\hat{\omega}_{0} n+\phi\right)$. Plot in the complex plane, all the phasors used in the solution.

