PROBLEM:

Circle the correct answer to each of these short answer questions (3 pts. each):

- 1. A signal x(t) is defined by: $x(t) = \cos(1000\pi t 1.3\pi)$. Its shortest period (T) is
 - (a) T = 1000 sec.
 - (b) T = 1 sec.
 - (c) $T = 10^{-3}$ sec.
 - (d) $T = 2 \times 10^{-3}$ sec.
 - (e) none of the above
- 2. A signal x(t) is defined by: $x(t) = 7 \sin(3\pi t \frac{1}{2}\pi)$. A valid complex exponential representation for x(t) is:
 - (a) $x(t) = \Re \{ 14e^{-j\pi} e^{j3\pi t} \}$
 - (b) $x(t) = \Re e\{7e^{j\pi}e^{j3\pi t}\}$
 - (c) $x(t) = \Re e\{7e^{-j0.5\pi}e^{j3\pi t}\}$
 - (d) $x(t) = \Re e\{7e^{j3\pi}e^{j\pi t}\}$
 - (e) none of the above
- 3. When the following two sinusoids are combined: $\cos(6t + \pi/3) + \cos(6t \pi/3)$, determine the amplitude (A) and phase (ϕ) of the resulting sinusoid.
 - (a) A = 1 and $\phi = 0$.
 - (b) A = 1 and $\phi = \pi/3$.
 - (c) A = 1 and $\phi = -\pi/3$.
 - (d) $A = \sqrt{3}$ and $\phi = 0$.
 - (e) none of the above
- 4. If the input to an ideal C/D converter is a sinusoid with frequency of 2500 Hz, and the output is the discrete-time sinusoid: $x[n] = 4\cos(\frac{1}{2}\pi n)$, then

determine the possible value(s) of the sampling frequency f_s :

- (a) $f_s = 10,000 \text{ Hz}$
- (b) $f_s = 2000 \text{ Hz}$
- (c) $f_s = 400 \text{ Hz}$
- (d) all of the above
- (e) none of the above

