PROBLEM:

Circle the correct answer to each of these short answer questions (3 pts. each):

1. A particular system may be viewed as a cascade of two systems whose separate system functions are $H_1(z) = 1 - z^{-1}$ and $H_2(z) = 1 + z^{-2}$. Determine H(z), the overall system function.

(a)
$$H(z) = 1 + z^{-1} + z^{-2} + z^{-3}$$

(b) $H(z) = 1 - z^{-1} + z^{-2}$
(c) $H(z) = \frac{1 - z^{-1}}{1 + z^{-2}}$
(d) $H(z) = 1 - z^{-1} + z^{-2} - z^{-3}$

- 2. Pick the correct frequency response for the FIR filter: y[n] = x[n] x[n-1]
 - (a) $\delta[n] \delta[n-1]$
 - (b) $\sin(\frac{1}{2}\hat{\omega})$
 - (c) $2e^{-j(\hat{\omega}-\pi)/2}\sin(\frac{1}{2}\hat{\omega})$
 - (d) $|2\sin(\frac{1}{2}\hat{\omega})|$
 - (e) none of the above
- 3. If $H(z) = z^{-3}$, the filter has a frequency response (magnitude) that is:
 - (a) constant for all $\hat{\omega}$
 - (b) a lowpass filter
 - (c) a highpass filter
 - (d) a bandpass filter
 - (e) equal to $\delta[n-3]$

4. If $H(z) = \frac{z^{-3}}{1 - 0.75z^{-1}}$, the value of the frequency response at $\hat{\omega} = \frac{1}{2}\pi$ is equal to

- (a) zero
- (b) $0.8e^{j0.295\pi}$
- (c) $0.8e^{-j0.295\pi}$
- (d) $0.2e^{j0.5\pi}$
- (e) 4