

PROBLEM:

A signal x(t) has the two-sided spectrum representation shown below.

(a) Write an equation for x(t). Make sure to express x(t) as a real-valued signal.

- (b) If the signal is sampled at a rate of $f_s = 25$ Hz, sketch the "digital" spectrum of this signal. Indicate the complex phasor value at each frequency. Only the range $-\pi < \hat{\omega} \le \pi$ needs to be shown.
- (c) If the length-3 FIR filter (below) has filter coefficients $\{b_k\} = \{1, b_1, 1\}$, show that $b_1 = -2\cos(0.8\pi) = 1.618$ will make the output signal y[n] equal to zero.

