PROBLEM:

Suppose that a system is defined by the following operator

$$H(z) = (1 + z^{-1}) \frac{1 + z^{-2}}{1 + 0.5z^{-1}}$$

- (a) Write the time-domain description of this system—in the form of a difference equation.
- (b) This system can "null" certain input signals. Determine *all* input frequencies $\hat{\omega}_{\circ}$, for which the response to $x[n] = \cos(\hat{\omega}_{\circ}n)$ is equal to zero.
- (c) When the input to the system is the unit-step signal x[n] = u[n] determine the output signal y[n] in the form:

$$y[n] = K_1 \alpha^n u[n] + K_2 u[n] + K_3 \delta[n-1]$$

Give numerical values for the constants K_1 , K_2 and α . Verify that K_2 is equal to H(z) at z = 1. Hint: this system is stable, so the value for $|\alpha|$ must be less than one. Thus, $y[n] \to K_2$, as $n \to \infty$