
PROBLEM:

A discrete-time system is defined by the following system function: $H(z) = \frac{1+z^{-2}}{1-0.75z^{-1}} = \frac{1}{1-0.75z^{-1}} + \frac{z^{-2}}{1-0.75z^{-1}}.$

$$1 - 0.75z^{-1} \qquad 1 - 0.75z^{-1} \qquad 1 - 0.75z^{-1}$$
(a) Use the first form of $H(z)$ to determine *all* the poles and zeros of $H(z)$ and plot them in the z-plane.

(c) Use the first form of
$$H(z)$$
 to obtain an expression for the magnitude-squared of the frequency response

(b) Use the second form of H(z) above to find the corresponding impulse response h[n].

 $|H(e^{j\hat{\omega}})|^2 = H(e^{j\hat{\omega}})H^*(e^{j\hat{\omega}})$. Your answer should involve only real quantities.

(d) For what value (or values) of $\hat{\omega}$ will it be true that y[n] = 0 for $-\infty < n < \infty$ when the input to the system is $x[n] = e^{j\hat{\omega}n}$ for $-\infty < n < \infty$?