PROBLEM:

 $\frac{\text{frequency }(\omega) \quad \text{complex phasor}}{-150\pi \qquad X_{-2}}$

 -90π

The two-sided spectrum of a signal x(t) is given in the following table:

	ω_1	Λ	
	150π	$1+\sqrt{3}j$	
	1307	1 + V 5 J	
(a) If $x(t)$ is a real signal, what are X_1, X_{-2} , and ω_1 ?			
(a) If N(t) is a real signal, what are it	1, 11 = 2, and o	o1.	

(b) Write an expression for x(t) involving only real numbers and cosine functions.