PROBLEM:

be y[n] = 0 for $-\infty < n < \infty$?

where

Consider the following cascade system:

 $x[n] \qquad \text{LTI} \\ \text{System #1} \\ H_1(z) \qquad w[n] \qquad \text{System #2} \\ H_2(z) \qquad y[n]$ $H_2(z) = 2 + 2z^{-2} \quad \text{and} \quad H_2(z) = 1 + \frac{1}{2}z^{-1}.$

(a) Determine the system function
$$H(z)$$
 of the overall system. Express your answer as a polynomial in z^{-1} .

(b) Determine and plot the impulse response h[n] of the overall system.

(d) If the input is $x[n] = Ae^{j\phi}e^{j\hat{\omega}_0 n}$ for $-\infty < n < \infty$, for what values of $-\pi \le \hat{\omega}_0 \le \pi$ will the output