
## PROBLEM:

A linear time-invariant system is defined by the system function

$$H(z) = -z^{-1} + 2z^{-2} - z^{-3}.$$

The magnitude and phase of the frequency response of this system are plotted in the following figure. Note that the frequency scale is  $\hat{\omega}/\pi$ .



- (a) This filter is a *lowpass bandpass highpass* filter. (Circle one.)
- (b) Use the above graph to determine (as accurately as you can) the output y[n] of this system when the input is

 $x[n] = 20 + 20\cos(0.6\pi n)$ .

Mark the points on the graph that you used in your solution.

(c) Determine an expression for the frequency response,  $H(e^{j\hat{\omega}})$ . Write your answer in the form  $H(e^{j\hat{\omega}}) = A(\hat{\omega})e^{-j\hat{\omega}n_0}$ , where  $A(\hat{\omega})$  is real and  $n_0$  is an integer.