PROBLEM: For each H(z), determine all of the poles and zeros, including those at z=0 and $z=\infty$. System Function, H(z)**Poles and Zeros**

(a) $H(z) = (1 - iz^{-1})(1 + iz^{-1})$ 1. pole at z=2, zero at z=0

ANS =

ANS =

ANS =

ANS =

ANS =

(e) $H(z) = \frac{z^{-1}}{1 + \frac{1}{2}z^{-1}}$

(b) $H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$

(c) $H(z) = \frac{1}{1 - 0.81z^{-2}}$

(d) $H(z) = \frac{1}{1 + 0.81z^{-2}}$

2. poles at
$$z = 0$$
, zeros at $z = \pm j$

3. pole at
$$z = -\frac{1}{2}$$
, zero at $z = \infty$

4. pole at
$$z = -2$$
, zero at $z = \infty$

5. poles at
$$z = \pm 0.9$$
, zeros at $z = 0$

5. poles at
$$z = \pm 0.9$$
, zeros at $z = 0$

6. poles at
$$z = \pm j0.9$$
, zeros at $z = 0$

7 pole at
$$z = \frac{1}{2}$$
 zero at $z = 0$

7. pole at
$$z = \frac{1}{2}$$
, zero at $z = 0$

7. pole at
$$z = \frac{1}{2}$$
, zero at $z = 0$

7. pole at
$$z = \frac{1}{2}$$
, zero at $z = 0$
8. pole at $z = \frac{1}{2}$, no zeros

6. poles at
$$z = \pm j0.9$$
, zeros at $z = 0$

5. poles at
$$z = \pm 0.9$$
, zeros at $z = 0$