PROBLEM:

Complex exponentials obey the expected rules of algebra when doing integrals and derivatives. Consider the complex $\operatorname{signal} z(t)=Z e^{j \pi t}$ where $Z=e^{-j \pi / 8}$.
(a) Show that the first derivative of $z(t)$ with respect to time can be represented as a new complex exponential $Q e^{j \pi t}$, i.e., $\frac{d}{d t} z(t)=Q e^{j \pi t}$. Determine the value for the complex amplitude Q, and show that the angle of Q is 90° greater than that of Z.
(b) Evaluate the definite integral of $z(t)$ over the range $0 \leq t \leq 1: \quad \int_{0}^{1} z(t) d t=$? Note that integrating a complex quantity follows the expected rules of algebra: you could integrate the real and imaginary parts separately, but you can also use the integration formula for an exponential directly on $z(t)$.
(c) Evaluate the definite integral of $z(t)$ over the range $-1 \leq t \leq 1: \quad \int_{-1}^{1} z(t) d t=$?
(d) Evaluate the integral of the magnitude squared $|z(t)|^{2}$ over the range $-1 \leq t \leq 1: \int^{1}|z(t)|^{2} d t=$?

