PROBLEM:

Complex exponentials obey the expected rules of algebra when doing integrals and derivatives. Consider the complex signal $z(t) = Ze^{j\pi t}$ where $Z = e^{-j\pi/8}$.

- (a) Show that the first derivative of z(t) with respect to time can be represented as a new complex exponential $Qe^{j\pi t}$, i.e., $\frac{d}{dt}z(t) = Qe^{j\pi t}$. Determine the value for the complex amplitude Q, and show that the angle of Q is 90° greater than that of Z.
- (b) Evaluate the definite integral of z(t) over the range $0 \le t \le 1$: $\int_{0}^{1} z(t)dt = ?$

Note that integrating a complex quantity follows the expected rules of algebra: you could integrate the real and imaginary parts separately, but you can also *use the integration formula for an exponential* directly on z(t).

(c) Evaluate the definite integral of z(t) over the range $-1 \le t \le 1$: $\int_{1}^{1} z(t)dt = ?$

(d) Evaluate the integral of the magnitude squared $|z(t)|^2$ over the range $-1 \le t \le 1$: $\int |z(t)|^2 dt = ?$