Suppose that $x(t)$ is formed via the following sum:

$$
\begin{equation*}
x(t)=10 \sqrt{3} \cos (77 \pi t+\pi / 6)+A \cos (77 \pi t+\phi) \tag{1}
\end{equation*}
$$

where A is a positive number. In addition, assume that $x(t)$ has a phase of zero, so it is also given by the sinusoidal definition:

$$
\begin{equation*}
x(t)=B \cos (77 \pi t) \tag{2}
\end{equation*}
$$

where B is a positive number.
(a) In this part assume that $B=20$, and solve for A and ϕ.
(b) Now assume that B can vary. Solve for A, B and ϕ so that the value of A is minimized among all possible choices that satisfy equations (1) and (2). Draw a plot of the complex amplitudes to prove (via a geometrical argument) that you have found the minimum for A. (Remember that $A>0$) Hint: To solve this problem try a graphical approach with plots of the complex amplitudes. Also, recall the geometrical theorem that tells you how to find the shortest distance between a line and a point not on the line.

