PROBLEM:

 S_2 : $y_2[n] = 7x_2[n-5] + 7x_2[n-6]$

Suppose that three systems are hooked together in "cascade." In other words, the output of S_1 is the input

 $y_1[n] = x_1[n] + x_1[n-2]$

to S_2 , and the output of S_2 is the input to S_3 . The three systems are specified as follows:

 \mathcal{S}_1 :

 \mathcal{S}_3 : $\mathcal{H}_3(\hat{\omega}) = e^{-j\hat{\omega}} - e^{-j2\hat{\omega}}$ NOTE: the output of \mathcal{S}_i is $y_i[n]$ and the input is $x_i[n]$.

The objective in this problem is to determine the equivalent system that is a single operation from the input x[n] (into S_1) to the output y[n] which is the output of S_3 . Thus x[n] is $x_1[n]$ and y[n] is $y_3[n]$.

(a) Determine the difference equation for S_3 .

(b) Determine the frequency response of the first two systems: $\mathcal{H}_i(\hat{\omega})$ for i=1,2.

(c) Determine the frequency response of the overall cascaded system.(d) Write *one difference equation* that defines the overall system in terms of x[n] and y[n] only.