PROBLEM:

Solve for the unknown sinusoid in the following equation:

$$
A \cos \left(\omega_{0} t+\phi\right)+2 \cos \left(\frac{1}{4} \pi t+5 \pi / 6\right)=2 \cos \left(\frac{1}{4} \pi(t+12)\right)+\frac{1}{2} \cos \left(\frac{1}{4} \pi(t-10)\right)
$$

(a) Express your answer in the form $x(t)=A \cos \left(\omega_{0} t+\phi\right)$ by finding the numerical values of A and ϕ, as well as ω_{0} (give the correct units).
(b) Make TWO complex plane plots to illustrate how complex amplitudes (phasors) are combined cia vector addition to solve part (a). On the first plot, show a "head-to-tail" vector plot of the two complex amplitudes whose values are given by the sinusoids on the left side of the equal sign; on the second plot, show a "head-to-tail" vector plot of the two complex amplitudes for the sinusoids on the right side of the equal sign.

