PROBLEM:

For each of the following frequency response, pick one of the representations below that defines *exactly* the same LTI system. Write your answer S_1 , S_2 , S_3 , S_4 , S_5 , or S_6 , in the box next to each frequency response. In addition, evaluate the frequency response at $\hat{\omega} = 0$, $\pm \pi$ and $\hat{\omega} = \pm \frac{1}{2}\pi$ as requested for each case;*simplify* the answer to **polar form** and write it in the space provided.

ANS =
$$\mathcal{H}(\hat{\omega}) = e^{-j2\hat{\omega}}(2\cos(\hat{\omega}))$$

 $\mathcal{H}(0) =$
ANS = $\mathcal{H}(\hat{\omega}) = -e^{-j2\hat{\omega}}$
 $\mathcal{H}(0) =$
ANS = $\mathcal{H}(\hat{\omega}) = 1 + e^{-j\hat{\omega}} + e^{-j2\hat{\omega}}$
 $\mathcal{H}(\frac{1}{2}\pi) =$
ANS = $\mathcal{H}(\hat{\omega}) = e^{-j\hat{\omega}} - e^{-j3\hat{\omega}}$
 $\mathcal{H}(\pi) =$

POSSIBLE ANSWERS: (impulse response, filter coefficients or difference equation)

$$S_1: h[n] = 3\delta[n] - 3\delta[n-2]$$

$$S_2$$
: $y[n] = x[n-1] - x[n-3]$

 $S_3: b_k = \{1, 0, 1\}$

$$S_4: h[n] = \delta[n-1] + \delta[n-3]$$

 $S_5: y[n] = -x[n-2]$

 $S_6: b_k = \{1, 1, 1\}$