A periodic signal $x(t)$ with a period $T_{0}=10$ is described over one period, $0 \leq t \leq 10$, by the equation

$$
x(t)= \begin{cases}0 & 0 \leq t \leq 5 \\ 2 & 5<t \leq 10\end{cases}
$$

This signal can be represented by the Fourier series

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}
$$

which is valid for all time $-\infty<t<\infty$.
(a) Sketch the periodic function $x(t)$ for $-10<t<20$.
(b) Determine a_{0}, the D.C. coefficient of the Fourier Series.
(c) Use the Fourier analysis integral ${ }^{1}($ for $k \neq 0)$

$$
a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j k \omega_{0} t} d t
$$

to find the $\underline{\text { first }}(k=1)$ Fourier series coefficient, a_{1}. Note: $\omega_{0}=2 \pi / T_{0}$.
(d) If we add a constant value of one to $x(t)$, we obtain the signal $y(t)=1+x(t)$ with $y(t)$ given over one period by

$$
y(t)= \begin{cases}1 & 0 \leq t \leq 5 \\ 3 & 5<t \leq 10\end{cases}
$$

This signal can also be represented by a Fourier series,

$$
y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j k \omega_{0} t}
$$

Explain how b_{0} and b_{1} are related to a_{0} and a_{1}. (Note: You should not have to evaluate any new integrals explicitly to answer this question.)

