PROBLEM:

A periodic signal x(t) with a period $T_0 = 10$ is described over one period, $0 \le t \le 10$, by the equation

$$x(t) = \begin{cases} 0 & 0 \le t \le 5\\ 2 & 5 < t \le 10 \end{cases}$$

This signal can be represented by the Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

which is valid for all time $-\infty < t < \infty$.

- (a) Sketch the periodic function x(t) for -10 < t < 20.
- (b) Determine a_0 , the D.C. coefficient of the Fourier Series.
- (c) Use the Fourier *analysis* integral ¹ (for $k \neq 0$)

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jk\omega_0 t} dt$$

to find the <u>first</u> (k = 1) Fourier series coefficient, a_1 . Note: $\omega_0 = 2\pi/T_0$.

(d) If we add a constant value of one to x(t), we obtain the signal y(t) = 1 + x(t) with y(t) given over one period by

$$y(t) = \begin{cases} 1 & 0 \le t \le 5\\ 3 & 5 < t \le 10 \end{cases}$$

This signal can also be represented by a Fourier series,

$$y(t) = \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0 t}$$

Explain how b_0 and b_1 are related to a_0 and a_1 . (Note: You should not have to evaluate any new integrals explicitly to answer this question.)

¹The Fourier integral can be done over any period of the signal; in this case, the most convenient choice is from -5 to 0.