PROBLEM:

A causal LTI system has the following system function:

$$H(z) = \frac{1+z^{-2}}{1-0.8z^{-1}}.$$

- The following questions cover most of the ways available for analyzing IIR discrete-time systems.
 - (a) Plot the poles and zeros of H(z) in the z-plane.
 - (b) Use *z*-transforms to determine the impulse response h[n] of the system; i.e., the output of the system when the input is $x[n] = \delta[n]$.
 - (c) Determine if the system is stable.
 - (d) Determine an expression for the frequency response $H(e^{j\hat{\omega}})$ of the system.
 - (e) Use the frequency response function to determine the output $y_1[n]$ of the system when the input is