PROBLEM:

In all parts below, the sampling rates of the C/D and D/C converters are **equal**, and the input to the Ideal C/D converter is

$$x(t) = 8\cos(2\pi(200)t + \pi/2) + 5\cos(2\pi(400)t).$$

(a)If the output of the ideal D-to-C Converter is

$$y(t) = x(t) = 8\cos(2\pi(200)t + \pi/2) + 5\cos(2\pi(400)t),$$

what general statement can you make about the sampling frequency f_s in this case?

(b) If the sampling rate is $f_s = 500$ samples/sec., determine the discrete-time signal x[n], and give an expression for x[n] as a sum of cosines. *Make sure that all frequencies in your answer are positive and less than* π *radians.*

$$x[n] =$$

Plot the spectrum of this signal over the range of frequencies $-\pi \le \hat{\omega} \le \pi$. Make a plot for your answer, but label the frequency, amplitude and phase of each spectral component.

(c) If the output of the Ideal D-to-C Converter is

$$y(t) = 8\cos(2\pi(200)t + \pi/2) + 5,$$

determine the value of the sampling frequency f_s . (Remember that the input x(t) is as defined above.)