PROBLEM:

 $T_0 =$

 $\theta =$

 $\psi =$

Determine
$$A$$
, ω_0 , and ϕ .

$$A = \omega_0 = \phi = 0$$

(b) A periodic signal x(t) is given by

A periodic signal
$$x(t)$$
 is given by
$$x(t) = -1 +$$

A periodic signal
$$x(t)$$
 is given by
$$x(t) = -1 + \cos(100\pi t + \theta) + 2\cos(150\pi t + \psi).$$
 Determine the period T_0 of this signal.

$$1 x(t)$$
 is given by
$$x(t) = -1 + \cos t$$

(c) If the Fourier series coefficients of the signal x(t) in part (b) are $a_0 = -1$, $a_2 = 0.5e^{j\pi/6}$, $a_{-2} = 0.5e^{j\pi/6}$

 $0.5e^{-j\pi/6}$, $a_3 = e^{-j\pi/3}$, and $a_{-3} = e^{j\pi/3}$, determine θ and ψ for the signal x(t).

$$A = \omega_0 = \omega_0$$

Determine
$$A$$
, ω_0 , and ϕ .
$$A = \omega_0 = \omega_0$$

(a) Let $w(t) = 3\cos(200\pi t + 3\pi/4) + 2\cos(200\pi t - \pi/4) = A\cos(\omega_0 t + \phi)$.