$$
x(t)=\cos \left(\omega_{0} t+\pi / 3\right)+2 \sin \left(\omega_{0} t-\pi / 3\right)
$$

(a) Find a complex-valued signal $z(t)$ such that $x(t)=\mathfrak{R e}\{z(t)\}$. Simplify $z(t)$ as much as possible, so that you can identify its complex amplitude. Hint: Be careful to note that the second term in $x(t)$ is a sine rather than a cosine.
(b) Assume that $\omega_{0}=20 \pi \mathrm{rad} / \mathrm{sec}$. Make a plot of $\mathfrak{H e}\left\{(1+j) e^{j \omega_{0} t}\right\}$ over the range $-0.1 \leq t \leq$ 0.2 secs. How many periods are included in the plot?

