Define $x(t)$ as

$$
\begin{equation*}
x(t)=5 \sqrt{2} \cos (20 \pi t+\pi / 4)+A \cos (20 \pi t+\phi) \tag{1}
\end{equation*}
$$

where A is a positive number. In addition, assume that $x(t)$ has a phase of zero, so that it may be written as

$$
\begin{equation*}
x(t)=B \cos (20 \pi t) \tag{2}
\end{equation*}
$$

where B is a positive number.
(a) What relationship must exist between A and ϕ in order for $x(t)$ to have zero phase as indicated in Eq. 2?
(b) If $B=10$, what are the values for A and ϕ ?
(c) Now assume that B is unspecified. Find the values for A, B, and ϕ so that the value of A is minimized. Draw a plot of the complex amplitudes to prove using a geometrical argument that you have found the minimum for A. Hint: Recall the geometrical "theorem" that tells you how to find the shortest distance between a line and a point that is not on the line (have you heard the term "projection"?).

