Complex exponentials obey the expected rules of algebra when doing operations such as integrals, derivatives, and time-shifts. Consider the complex signal $z(t)=Z e^{j 20 \pi t}$ where $Z=2 e^{j \pi / 3}$.
(a) Show that the first derivative of $z(t)$ with respect to time can be represented as a new complex exponential $Q e^{j 20 \pi t}$, i.e., $\frac{d}{d t} z(t)=Q e^{j 20 \pi t}$. Determine the value for the complex amplitude Q.
(b) Plot both Z and Q in the complex plane. How much greater (or smaller) is the angle of Q than the angle of Z ?
(c) Compare $\mathfrak{R e}\left\{\frac{d}{d t} z(t)\right\}$ to $\frac{d}{d t} \mathfrak{H e}\{z\}$ for the given signal $z(t)$. Do you think that this would be true for any complex exponential signal?
(d) Evaluate the definite integral of $z(t)$ over the range $-0.05 \leq t \leq 0.05$:

$$
\int_{-0.05}^{0.05} z(t) d t=?
$$

Note that integrating a complex quantity follows the expected rules of algebra: you could integrate the real and imaginary parts separately, but you can also use the integration formula for an exponential directly on $z(t)$.
(e) Show that the time-shifted version of $z(t)$ can be represented as a new complex exponential $P e^{j 20 \pi t}$, i.e., $z\left(t-t_{d}\right)=P e^{j 20 \pi t}$. Determine the value for the complex amplitude P. Use your result to determine how t_{d} be should chosen so that $z\left(t-t_{d}\right)=z(t)$.

