
PROBLEM:

A real signal

$$x(t) = A\cos(40\pi t + \phi) + B\cos(\omega_1(t - \tau)) + C\cos(\omega_2 t) + D$$
 has the following two-sided spectrum:

$$-80$$
 -50 -20 0 20 50 80 frequency in I (a) Determine $A, B, C, D, \omega_1, \omega_2, \phi$, and τ the signal $x(t)$ with the above spectrum.

$$A = \underline{\qquad}$$

$$B = \underline{\qquad}$$

(a) Determine
$$A$$
, B , C , D , ω_1 , ω_2 , ϕ , and τ the signal $x(t)$ with the above spectrum.
$$A = \underline{\qquad}$$

$$B = \underline{\qquad}$$

$$\phi = \underline{\qquad}$$

$$\omega_1 = \underline{\qquad}$$

$$\omega_2 = \underline{\qquad}$$

(b) The signal
$$x(t)$$
 is periodic. Determine the fundamental frequency f_0 , of the signal $x(t)$.