PROBLEM:

Let $h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$ be the impulse response of an LTI system and let $x[n] = 2e^{j(\pi/2)n}, \quad -\infty < n < \infty$

(a) Determine the frequency response
$$\mathcal{H}(\hat{\omega})$$
 of $h[n]$.

Note: We have also used the notation $H(e^{j\hat{\omega}})$ for the frequency response; i.e. $\mathcal{H}(\hat{\omega}) = H(e^{j\hat{\omega}})$.

positive number. Determine A, ϕ and ω_a .

 $\mathcal{H}(\hat{\omega}) =$

A =

 $\phi =$

 $\omega_o =$

(b) If y[n] = h[n] * x[n], the output is a complex exponential of the form $Ae^{j(\omega_0 n + \phi)}$, where A is a real