PROBLEM:

Let $h[n] = \frac{1}{2}\delta[n] + 3\delta[n-1] + \frac{1}{2}\delta[n-2]$ be the impulse response of an LTI system and let

$$x[n] = 3e^{j(3\pi/2)n}, \qquad -\infty < n < \infty$$

be the input to that system.

 $\mathcal{H}(\hat{\omega}) =$

(a) Determine the frequency response $\mathcal{H}(\hat{\omega})$ of h[n]. Note: We have also used the notation $H(e^{j\hat{\omega}})$ for the frequency response; i.e. $\mathcal{H}(\hat{\omega}) = H(e^{j\hat{\omega}})$.

(b) If y[n] = h[n] * x[n], the output is a complex exponential of the form $Ae^{j(\omega_o n + \phi)}$, where A is a real positive number. Determine A, ϕ and ω_o .

A =

 $\phi =$

 $\omega_o =$