PROBLEM:

An amplitude modulated (AM) cosine wave is represented by the formula

 $x(t) = [3 + \sin(\pi t)]\cos(13\pi t + \pi/2)$

(a) Use *phasors* to show that x(t) can be expressed in the form:

 $x(t) = A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2) + A_3 \cos(\omega_3 t + \phi_3)$

where $\omega_1 < \omega_2 < \omega_3$; i.e., find A_1 , A_2 , A_3 , ϕ_1 , ϕ_2 , ϕ_3 , ω_1 , ω_2 , ω_3 in terms of A, ω_0 , and ω_c .

(b) Sketch the two-sided spectrum of this signal on a frequency axis. Be sure to label important features of the plot. Label your plot in terms of the numerical values of the A_i 's ϕ_i 's and ω_i 's.

(c) Determine the minimum sampling rate that can be used to sample x(t) without any aliasing.