Consider the following system.

(a) Suppose that the discrete-time signal $x[n]$ is given by the formula

$$
x[n]=10 \cos (0.13 \pi n+\pi / 13)
$$

If the sampling rate is $f_{s}=1000$ samples/second, determine two different continuous-time signals $x(t)=x_{1}(t)$ and $x(t)=x_{2}(t)$ that could have been inputs to the above system; i.e., find $x_{1}(t)$ and $x_{2}(t)$ such that $x[n]=x_{1}\left(n T_{s}\right)=x_{2}\left(n T_{s}\right)$ if $T_{s}=0.001$. Both of these input signals should have a frequency less than 1000 Hz . Give a formula for each signal.
(b) If the input $x(t)$ is given by the two-sided spectrum representation shown below, determine a simple formula for $y(t)$ when $f_{s}=700$ samples $/ \mathrm{sec}$. (for both the C / D and D / C converters).

