PROBLEM:

Circle the correct answer to each of these short answer questions:

- 1. A signal x(t) is defined by: $x(t) = \Re e\{e^{j12\pi t} + e^{j21\pi t}\}$. Its fundamental frequency is:
 - (a) $f_0 = 1.5 \text{ Hz}$
 - (b) $f_0 = 3\pi$ Hz
 - (c) $f_0 = 6 \text{ Hz}$
 - (d) $f_0 = 21 \text{ Hz}$
 - (e) none of the above
- 2. A sinusoidal signal x(t) is defined by: $x(t) = \Re e\{(1 + j)e^{j\pi t}\}$. When plotted versus time (t), a maximum value of x(t) will be located at:
 - (a) t = 0 sec.
 - (b) t = 1/4 sec.
 - (c) t = 1 sec.
 - (d) t = 7/4 sec.
 - (e) none of the above
- 3. Determine the amplitude (A) and phase (ϕ) of the sinusoid that is the sum of the following three sinusoids: $\cos(\pi t + \pi/2) + \cos(\pi t + \pi/4) + \cos(\pi t + 3\pi/4)$.
 - (a) A = 0 and φ = 0.
 (b) A = 1 and φ = π/2.
 (c) A = 1 + √2 and φ = 0.
 - (d) $A = 1 + \sqrt{2}$ and $\phi = \pi/2$.
 - (e) A = 3 and $\phi = \pi/2$.
- 4. Evaluate the complex number: $z = \sum_{k=0}^{4} e^{-j\pi k/2}$
 - (a) z = 0
 - (b) z = j
 - (c) z = -j
 - (d) z = 1
 - (e) z = -1