PROBLEM:

The phase of a sinusoid can be related to time shift:

$$
x(t)=A \cos \left(2 \pi f_{0} t+\phi\right)=A \cos \left(2 \pi f_{\circ}\left(t-t_{1}\right)\right)
$$

(a) When the frequency is $f_{\circ}=200$ and $t_{1}=1 / 500 \mathrm{sec}$, determine all possible values for the phase ϕ.
(b) If the phase is $\phi=-\pi / 4$ and $x(t)$ has a positive peak at $t_{1}=0.001 \mathrm{sec}$, determine the frequency f_{0}.
(c) If the phase is $\phi=7.2 \pi$ and $x(t)$ has a positive peak at $t_{1}=0.001 \mathrm{sec}$, determine the frequency f_{\circ}. Make sure that your answer for f_{\circ} is positive. Remember that the cosine function has a period of 2π. Is your answer unique? If not, give a general formula for all possible frequencies.

